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OPTIMIZATION OF PERIODIC SYSTEMS* 

V. B. LARIN 

The problem of designing a regulator, optimal by a quadratic performance criterion, 
on an infinite time interval is examined for a linear periodic system. It is assum- 
ed that the control plant's motion is described by a system of linear periodic fin- 
ite-difference equations. Controllable plants whose motion is described by 
differential and by finite-difference equations on different parts of the period 
are analyzed as well. The optimal regulator design problem is reduced to the deter- 
mination of a periodic solution of an appropriate Riccati equation. An algorithm 
for constructing such a solution is derived. It is noted that this result can be 
used in periodic optimization problems /l/ and in the design of a stabilization 
system for a pacing apparatus. 

1. Let us consider the problem of an analytic design of a regulator for a discrete 
periodic system. Let the plant's motion be described by the system of finite-difference equa- 
tions 

x (i t 1) - Y (i) x (i) T r (i) u (i), i=l, 2,. . . (1.1) 

For I (O)#O it is required to choose suitably a control strategy (the equation of the regul- 
ator) 

u (i) = f (x (i)) (1.2) 

ensuring the stability of system (1.1) and (1.2) (limi_.,x(i) -z 0) and minimizing the quadratic 
performance index 

Z3~~[X'(i)Q(i)X(i)fU'(i)B(i)U(i)l 
(1.3) 

Here x(i) and u(i) are the phase coordinate and the control vectors (the primes denote trans- 
position), the matrices W(i), I'(i), Q(i) = Q'(i)>O, B(i) = B'(i)> 0 are periodic with period 

p, i.e., Y (i + p) = Y (i), r (i + p) = r (i) , etc. 
It is well known (see /2/, for example) that for the given problem theoptimalregulator's 

Eq. (1.2) has the following form: 

" (i) z - IF' (i) S (i + 1) r (i) + B (i)l-’ r’ (i) S (i + t) XY (i) x (i) (1.4) 

The sequence of symmetric matrices S, defining the optimal control law, satisfies the re- 
currence relation 

S (j) = Y' (j) [S 0’ + 1) - S (i + 1) r 0’) (B 0’) + (1.5) 

r' 0‘) S (i i 1) r (j))-' r' (1)s (j -+ I)1 Y 0') + Q (j) 

Thus, to determine the control law (1.4) it is necessary to find the value of one element of 
the sequence of matrices S 0') satisfying relation (1.5). As a rule, in similar problems (with 
a finite time interval (i = 0, 1, 2,. .., n)) the value of matrix S(n) is indicated at the inter- 
val's right end. In the case at hand of an infinite time interval (i = 0, 1, 2,. ..) the deter- 
mination of the value of matrix S(j) for some value of index j is an independent problem. 

As a consequence of the periodicity of the matrices occurring in the problem's conditions 
the control strategy is not changed if the reference origin is shifted by p indices (i --p, 

p f I.. .). Therefore, the required matrix sequence also must satisfy a periodidtycondition 

S (i + p) = S (j) (1.6) 

To find the relation defining matrix S(j) it is necessary to obtain an analog of Theorem 2 of 
/3/ (which shows how to express the solution of a matrix Riccati differential equation in 
terms of blocks of the transition matrix of the Euler differential equations of the corres- 
ponding variational problem) for the case when the plant's motion is described not by differ- 
ential but by finite-difference equations. To the variational problem described by function- 
al (1.3) and the coupling Eqs.(l.l) there corresponds a system of equations relating the 
variation of the phase vector X(i) and the conjugate variable vector i(i) (see /2/, for in- 
stance) 
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x (i + t) = Y (i) x (i) - [‘ (i) B-’ (i) l” (i)h (i -- I), k (1) ~- Q (i) x (i) T Y’ (1) k il ;- I I 

we assume that 'P'(i) exists. Then 

an (ij = Y (i) + r (ij B-l 1.i) r’ (i) (Y’ cijj-’ Q (i) 
u12 (i) -= - r fi) B-l (i) r’ (i) (Y’ (i)j-’ 

%, (i) = - (Y' (i))-’ Q (i), cl21 (i) (Y’ (i))-’ 

Here E is the unit matrix. Since S(i) -= S(i)x (i), according to (1.8) we have 

lrvzli (n) + ~5~' (n) S (l)l x (i) - S (h f 1) l~.~li (n) - u,n (n) S (i)l x (,i) 

Hence follows a representation of the solution of difference Eq.(l.5) in terms of blocks of 
the transition matrix of system (1.7) (a discrete analog of Theorem 2 of /3/) 

s (n + i) = [WZI' (a) t W?B'(rl)S @)I Iw,,i (n) + Wd(I.I) S @)I-' (1.9) 

Notice the "asymmetry" of the expression defining a symmetric matrix S. 
The matrix d{i) defining system (1.7) satisfies the relation 

A’(i)J’A(i)J=E, J= _j 0”’ I I 
Multiplying by J both sides of the recurrence relation defining the matrix Jvi(n) in (1.8), 
we obtain 

Pv' (n + 1) J = A (i + n) Wi (n) J 

Consequently 
(UTi (II + 1))' J'&+ (n + I) J = (wi (0))‘J’w’ (0) J = E 

From this equality it follows that the blocks of matrix 1Y'(nf satisfy the relations 

10~: (m) = r(~~~' (n))T1 [E + ((clpi (n)j' Qli (a)1 = [(u2gi (d)‘l-1 + IUlai (n) (w22i (n))-1 u$ (n) (1.10) 

l(w22i (?+)‘I-’ (W21i (n))’ = W21i (n) (w22’ (n))-’ = iY (78) (1.11) 

(UYZli (n))' I&a (?&))‘I-’ = (wzz’ (n))-1 w2:i (n) = R’ (n) (1.12) 

We symmetrize (1.9) with the aid of (l.lO)- (1.12). From (1.9) and (1.16) we obtain 

S (i) = (&a' (a))-' [E -S (n -+- i) c" (n)P S (n) i i) ‘< I(%2’(4)‘1-’ -fiA’ (4 (1.13) 

Since according to,(l.ll) the matrix u' (72) is symmetric, we represent it as a product of 
three matrices ((W(R))-' exists) 

vl (n) = IP (n)N'(n) (HL (n))', (N'(n))' = Ni (n) 
We now write (1.9) in the symmetric form analogous to (1.5) 

s (i) = u+ (n) {s (i + ~4 - S (i + n) Ii’ (4 IW (41’S 6 + 4 X (1.14) 

H'(n) - (P(n))-'P (H' (RN' S (i & a)} (CD' (n))' -P(n) (J@(n) = (wtk (n))-I) 

According to (1.7) and (l.S), the matrices occuring in this expression are determined by the 
following recurrence relations (in which T'(n) does not enter) : 

@ (n + 1) = d (n) (E - Q (n + i) Cr' @))-I Y' (n + i) 
(o'(0) = E, vi(s + I) = Y (n + i)L'* (n) (E - Q In + i) x 
@ (n))-' 'f" (n + i) - f (n -+ i) B-’ (n + i) r’ (n -5 i). u’ (0) = 0 

Rf (n + i) = R’ (n) - @’ (n) (E - Q (n C i) U’ In))-’ Y 
0 (n + 1) Pi b))‘, R’ (0) = 0 

Together with the use of periodicity condition (1.61 expression (1.4) enables us to write 
a discrete algebraic Riccati equation which the desired matrix s(i) Satisfies, in the form 
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s (i) = @,’ (p) {S (i) - S (i) H’ (p) I(H’ (p))‘S (i)H’(p)-- (A” (PI)-‘I-’ (Hi (p))’ S (i)) (‘3’ (p))‘- R’ (p) (1.15) 

Thus, the problem of choosing matrix S(i) which together with (1.5) determines the required 
periodic sequence (respectively, the control strategy (1.4)) is reduced to the problem of 
choosing a solution of Eq.cl.15). To make such a choice we take advantage Of the following 
property of asymptotic stability of the optimal closed-loop system "Plant plus regulator". 
If a solution of Eq.tl.15) has been found, such that the eigenvalues of the matrix 

IE - u' (p) S (p + 1)P (0’ (p))’ (1.16) 

which determines the variation of the phase vector of the closed-loop system "plant plus re- 
gulator" corresponding to the discrete algebraic Riccati Eq.tl.15) /2/, lie inside the unit 
circle (if such a solution exists, then, as a rule, it is unique and can be found, forexample, 
by means of an algorithm /4/), then the system of Eqs,(l.l)- (1.4) is asymptotically stable 
and, consequently, this value of S(i) determines the required Periodic sequence. Let us show 
this. 

Bearing in mind the periodicity of the matrices occurring in the conditions of the prob- 
lem being examined, to prove the asymptotic stability of system (l.l)- (1.4) it is enough to 
show that the matrix stipulated by this system , connecting the vectors x (i !- p) and x (i), 
(this matrix determines the variation of the phase vector over one period) has eigenvalues 
lying inside the unit circle. According to (1.8) 

x (i + p) zz (Qli (p) + clti (p) S (i)) x (i) 
Making use of (1.10) and (1.13), we obtain 

x (i i p) -2 IE - =I$ @) (wzz’ (p))-1 S (p + i)l-1 [(zcsti (p))‘l-’ X X (i) 

The matrix connecting the vectors x(i + p) and x(i) in this recurrence relation coincides 
with (1.16). Therefore, if a solution of Eq.cl.15) has been chosen such that the absolute 
values of the eigenvalues of matrix (1.16) are less than one, then system (l.l)- (1.4) is 
asymptotically stable. 

2. Let us consider the problem of designing analytically a regulator for a Periodic con- 
trollable system whose motion is described by differential and by finite-difference equations 
on different parts of the Period. An example of such a control object is a two-legged pacing 
apparatus. 

Let us illustrate the necessity of a different method of descri- 
bing the pacing apparatus on different phases of its motion. Let 
the pacing apparatus be idealized as an inverted mathematical pen- 
dulum equipped with feet (Fig.l), consisting of a point mass nl and 
two weightless legs IQ and I+ on which it supports itself in turn 
after a specified time interval r (the mechanism accomplishes a one- 
pace regular walk). At the end of each leg there is a foot, viz., a 
device which by applying a moment at the point of junction of leg and 
foot (point 0,). 

We assume that the foot's mass can be neglected. Neglecting as 
well the viscous forces, the equation of motion of such a system al- 
ong the axis during the time it is supported on one leg is written 
as /5/ J" = gl' (z - I*) 

Here g is the gravitational acceleration, 2 is the coordinate of 
mass m, z, is the coordinate of point 0,. It is assumed that this 

s,(k+f) 
coordinate can change during the pace because of a change in the 
moment applied at point O, (a continuous control). We place the 

Fig.1 
origin of the coordinate system at point 0,. In a new (changing with 
Pace number) coordinate system the mechanism's equation of motion 
becomes 

(4).' = g/i-'3 f gh-‘u, (k - 1)~ < I < k?. k = 1, 2, . . . . I” = z - z1 (k), u = zI (k) - q (2.1) 

Here I, (k) is the coordinate of Point o,, which remains constant during the k-th pace being 
examined ((k- i)r<f<.kr) and changes by a jump at the next pace (at the instant of change of 
SUppOrt leg) Of mangitude v(k)= q(k+ 1) -am. 
moved has no inertia, the magnitude 

Because of the assumption that the leg being 
o(k) can be chosen arbitrarily (a pulsed control). 

At the instant of change of support leg CL= h) the horizontal velocity of the mass is 
continuous; therefore , its magnitude is the same in the old and in the new coordinate systems 
(the origins of these coordinate systems coincide with the leg's support points at the k-a 
and (k-f i) St paces, respectively. Consequently, 
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(3”). (kT -I- 0) = (2)’ (83 - 0) IL.?! 

At the instant L = Kr the cmrdinete 2” Suffers a discontinuity since A_== P(kr-0) is measux- 
ed in the old co~rdfnate g~stem~ while b+= z"(~s+o), in the new. This is shown in Fig-l. 
In the upper pert the WrChW~ism is Shown at the end of the k-th step (it is supported on leg 

9 1; in the lower, at the start of tie{ k-t I) st stsp (leg n? is tie supporting one). we 
obtain 

z*(kr +- 0) = z'(kr - 0) - u (II) (2.3) 

Consequsntly;yr the pacing apparatus with weightless legs being considered is described as a 
control plant by the afferential Eqs. (2.1) when (k - 1)x ~<8<k7 and by the difference Eqs, 
(2.2)- (2,s) when t==k~(k==i,z,...~. 

Let us ccimplicate the pacing aPParatuS '8 model consldoxea above 
by taking into account the mass of the foot on the moving leg ( a model 
with weighted legs). Let the pacing apparatue be modelled as a double 
mathematfcal pendulum, ahown in Fig.2, where ,m, is the mass of the 
mechanism's body, m, is the mass of the foot on the leg being moved, nz 
and % are the mechanism's legs. point 0, is the junction of the leg 
and foot and serves as the origin of the crrordinate system. Weassume 
that besides the moment 11~ acting in the foot a control moment !t2 is 
am&fed to the Leg being moved at the point it joins the body's mass. 
As in the previous example, we shall not exar&os the question of vertical. 
stclbiliration of the mechanism, assuming that mass *II moves hosiront- 
ally along the x-axis, We introduce the following phase coordinates 
of themechanism: $1 is the coordinate of mess IT+~, = x~‘,+ is the co- 
ordinate of mass .=lt+ =Q‘ IFig.2). In a neighborhood of the- vertical 
position of the mechanism's body there is a domain of values of thephase 
coordinates (which are the components of vector X' = ilr,. I:, Q. + 11 such 
that during the k-th pace (the period the mechanism is supported on 
one Leg) the variation of vector * can be described with sufficient 
accuracy by a linear system of differential equations, in which the con- 
trol vector has the form u' = [pp $$g. At the hstarit of change of sup- 

Pig. 2 port leg it-W a jump&se change occurs in the mechanism's phase co- 
o&bates. Let UEI find the relations describing the variation of the 
phase vector at the instant of change of suppoxt leg. Since origin of 
the reference spatem of the mechanism's phase vector coincides with the 
point of junction of support leg and foot, as swm on Fig.2 (the upper 

part af the figure show the mechanism at the instant f= hi--% the lower, at 2 i= k -:W the 
variations of coordinates xl asd 1% under change of supprt foot satisfy the following rela- 
tions: 

.r, (k? + 0) -= x1 {H - 0) - 33 GT - 01, q (kr +-OF = - f$ (kr - 01 
t2.4) 

AssuminIJ the boundednese of the moments YI and prr we obtain two more conditions 

z* (k? + 0) ..". r, (/rT - cl). r4 (kT i- 0) = 0 (2.5) 

We write relations 12.4) and (2.5) as 

An Zitzalysis of these exarepkes demonstrates the dfffexence in the mathematical modek? of phase 
coordinate variation of pacing apparatuses with weighted and we$&tless legs. 

Let us now anekyze the general PrdhSem. On time intervals (k - i) T < t <k @ -= I. 2.. .) 
let a control plant's motiwt be described by a system of ordinary differential eqz%tions 

x' .=- Fx + Gu (2.6) 

At the instant t 1 ke the phase vector variation is subject to the Law: 

x (k-C -+ 0) -- Fe (kr - 0) + "WV (k) (2.7) 

We are required to f&d a strategy of continuous and pulsed Co&rQ&s (u(t) == f fK @)I, v (?q = 

9 tx fk - Wf such that the closed-loop system uplant pks regulator* is amtoically stable 
and such that this strategy minimizes the following quadratic functional (the pexfonnance in- 
dex): z 

I (to) = j; (X’QX f U’BU) dl 4” *gl \” (k) c-t* (x-j 
!I 

(2.8) 
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Here F, G, B = B'>O, Q = Q' > 0 are periodic in t with period r, the matrices Fr,, hI, C = 

C’ > 0 are constant. Using the procedure, usual for linear quadratic Gaussian problems, of 
seeking the minimum of functional (2.8) as a quadratic form (see /2/, for example) 

min I (to) = x' (to) S (to) P (t,) 
we find 

u. V 

(Is - 1) 7 < t < h-t, u z _ B-1 G’Sr (2.9) 

t 7: lir, v (Ii) = - W’S (Isr 0) !lI + C)_’ III’S (k + ova 2 (k - 0) (2.10) 

For (k-I)r(t<In the matrix S satisfies the differential Riccati equation 

- s' = SF -+ F’S - SGB-‘G’S L Q (2.11) 

The jumps in this matrix at instant t ; h7 are described by 

S(kr - 0) = F; {S (kc + 0) - S (IL-I + 0) h2 (C -t M’S (h + O)M)-‘M’S (b -i- 0)) Fa (2.12) 

The invariance of the control strategy under a shift in the time reference origin by a 
period T leads to a periodicity condition for matrix S 

S (kr + 0) = S ((k t_ 1) T + 0), k = 0, I, 2,. . (2.13) 

Thus, as in the previous problem,to determine the optimal control strategy we need to find a 
periodic (with period T) matrix S satisfying Eqs.(Z.ll), (2.12) and ensuring the asymptotic 
stability of system (2.61, (2.7), (2.9), (2.10). This problem reduces to the one considered 
in Sect.1 if the connection between S(kt + 0) and ,S((k+.1) r- 0) is described not by dif- 
ferential Eq.(2.11) but by a relation analogous to (1.5). Let UE find this relation. As 

follows from /3/, if s(t) satisfies differential Eq.(2.11), then 

s (4 = [f&l 0) + erz (W (-!? 0)1 Bll (t) + el* (t) s (+ 0)1-l 

The matrices &l(t)& i = 1, 2) are determined from the solution of the problem 

(2.14) 

As in Sect.1 let 

Then 

(2.15) 

(2.16) 

Relation (2.16) permits us to write (2.14) as 

s c-k 0) = ed (t) is (t) - S (t) D (t) (D’ (t) S (4 D (t) - 
N-' (t))-' D' (t) S (01 (Qtz’ WY - Qaz-’ @I Qa 0) 

(2.17) 

Here the matrices D (t),iv(t) (b’-‘(f) exists, N’ (0 = N (01 are determined by factoring the 
symmetric matrix Q,, (1) Qzz-l (I) 

. , ~ ., 

D (t) iv (4 D’ (t) = Q,, 0) QB-’ (t) (2.18) 

The symmetry of matrices U (t) = e,,(t) &-l(t) and R (t) L= Ban-‘(t) Qtl (t) follows from (2.16); ac- 
cording to (2.15) they satisfy the symmetric differential equations and initial conditions 

b" = FU + UF’ + UQV - GB-‘G’, u (0) = 0 
R’ .= - em-l Q (et2-y, R (0) = 0 

We supplement these equations by one more, describing the variation 

&a-'/ dt = f&-l (QU + F’), err-l (0) = E 

(2.19) 

(2.20) 

of matrix ear-k 

(2.21) 

Thus, the connection between s(+o) aa s(7 - 0) is completely determined from (2.17)- 
(2.21). We use these relations to solve the problem posed. Condition (2.13) (when k = 0) 
leads to an equation analogous to (1.15) in the matrix S(+O) 

S (+o) = ez2-l (7) Fai IS (_tO) - S (+0) K (II-l + K’S (+O)K)-‘K’S (+O)lF (812-1 (T))’ - R (7) (2.22) 
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The matrices II, K are a result of factoring a symmetric matrix 

(IMC-'M t - F6 U (T) F&'f .: ATM?, II' = n 

Here the matrix n-l exists. As in the case of the discrete system considered in Sect.1, it 
can be proved that the requiredvalue of S (4-O) is that solution of Eq.(2.22) for which the 
matrix 

IE + (.UC-1.11' - F, I! (r)Fa') s (+O)P F,, (W- (7))' 

has eivenvalues lying inside the unit circle. In a special case, if 111 = 0, F& 2 E in (2.71, 
the value of S (+ 0) found by using the algorithm /4/ from (2.22) determines a peridic solu- 
tion of the matrix differential Riccati equation arising in problems of periodic optimization 
/l/. If matrix Q =. 0 in (2.8), then, according to (2.20), R(T) == 0 and Eq.(2.22) can be 
transformsd into a Liapunov equation. This case has been treated in detail (See:Larin,V.B., 
Stabilization of the herizontal motion of a two-leggedpacinqapparatus. Preprint No.4. Izd. 
Inst. Mat. Akad. Nauk SSSR, 1977). 
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